Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Assessing Oxidative Stress in Tumors by Measuring the Rate of Hyperpolarized [1-13C]Dehydroascorbic Acid Reduction Using 13C Magnetic Resonance Spectroscopy.

Identifieur interne : 000389 ( Main/Exploration ); précédent : 000388; suivant : 000390

Assessing Oxidative Stress in Tumors by Measuring the Rate of Hyperpolarized [1-13C]Dehydroascorbic Acid Reduction Using 13C Magnetic Resonance Spectroscopy.

Auteurs : Kerstin N. Timm ; De-En Hu ; Michael Williams ; Alan J. Wright ; Mikko I. Kettunen ; Brett W C. Kennedy ; Timothy J. Larkin ; Piotr Dzien ; Irene Marco-Rius ; Sarah E. Bohndiek [Royaume-Uni] ; Kevin M. Brindle [Royaume-Uni]

Source :

RBID : pubmed:27994059

Descripteurs français

English descriptors

Abstract

Rapid cancer cell proliferation promotes the production of reducing equivalents, which counteract the effects of relatively high levels of reactive oxygen species. Reactive oxygen species levels increase in response to chemotherapy and cell death, whereas an increase in antioxidant capacity can confer resistance to chemotherapy and is associated with an aggressive tumor phenotype. The pentose phosphate pathway is a major site of NADPH production in the cell, which is used to maintain the main intracellular antioxidant, glutathione, in its reduced state. Previous studies have shown that the rate of hyperpolarized [1-13C]dehydroascorbic acid (DHA) reduction, which can be measured in vivo using non-invasive 13C magnetic resonance spectroscopic imaging, is increased in tumors and that this is correlated with the levels of reduced glutathione. We show here that the rate of hyperpolarized [1-13C]DHA reduction is increased in tumors that have been oxidatively prestressed by depleting the glutathione pool by buthionine sulfoximine treatment. This increase was associated with a corresponding increase in pentose phosphate pathway flux, assessed using 13C-labeled glucose, and an increase in glutaredoxin activity, which catalyzes the glutathione-dependent reduction of DHA. These results show that the rate of DHA reduction depends not only on the level of reduced glutathione, but also on the rate of NADPH production, contradicting the conclusions of some previous studies. Hyperpolarized [1-13C]DHA can be used, therefore, to assess the capacity of tumor cells to resist oxidative stress in vivo However, DHA administration resulted in transient respiratory arrest and cardiac depression, which may prevent translation to the clinic.

DOI: 10.1074/jbc.M116.761536
PubMed: 27994059
PubMed Central: PMC5290948


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Assessing Oxidative Stress in Tumors by Measuring the Rate of Hyperpolarized [1-13C]Dehydroascorbic Acid Reduction Using 13C Magnetic Resonance Spectroscopy.</title>
<author>
<name sortKey="Timm, Kerstin N" sort="Timm, Kerstin N" uniqKey="Timm K" first="Kerstin N" last="Timm">Kerstin N. Timm</name>
<affiliation>
<nlm:affiliation>From the Department of Biochemistry.</nlm:affiliation>
<wicri:noCountry code="no comma">From the Department of Biochemistry.</wicri:noCountry>
</affiliation>
<affiliation>
<nlm:affiliation>the Cancer Research UK Cambridge Institute, and.</nlm:affiliation>
<wicri:noCountry code="subField">and</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Hu, De En" sort="Hu, De En" uniqKey="Hu D" first="De-En" last="Hu">De-En Hu</name>
<affiliation>
<nlm:affiliation>From the Department of Biochemistry.</nlm:affiliation>
<wicri:noCountry code="no comma">From the Department of Biochemistry.</wicri:noCountry>
</affiliation>
<affiliation>
<nlm:affiliation>the Cancer Research UK Cambridge Institute, and.</nlm:affiliation>
<wicri:noCountry code="subField">and</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Williams, Michael" sort="Williams, Michael" uniqKey="Williams M" first="Michael" last="Williams">Michael Williams</name>
<affiliation>
<nlm:affiliation>the Cancer Research UK Cambridge Institute, and.</nlm:affiliation>
<wicri:noCountry code="subField">and</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Wright, Alan J" sort="Wright, Alan J" uniqKey="Wright A" first="Alan J" last="Wright">Alan J. Wright</name>
<affiliation>
<nlm:affiliation>the Cancer Research UK Cambridge Institute, and.</nlm:affiliation>
<wicri:noCountry code="subField">and</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Kettunen, Mikko I" sort="Kettunen, Mikko I" uniqKey="Kettunen M" first="Mikko I" last="Kettunen">Mikko I. Kettunen</name>
<affiliation>
<nlm:affiliation>From the Department of Biochemistry.</nlm:affiliation>
<wicri:noCountry code="no comma">From the Department of Biochemistry.</wicri:noCountry>
</affiliation>
<affiliation>
<nlm:affiliation>the Cancer Research UK Cambridge Institute, and.</nlm:affiliation>
<wicri:noCountry code="subField">and</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Kennedy, Brett W C" sort="Kennedy, Brett W C" uniqKey="Kennedy B" first="Brett W C" last="Kennedy">Brett W C. Kennedy</name>
<affiliation>
<nlm:affiliation>From the Department of Biochemistry.</nlm:affiliation>
<wicri:noCountry code="no comma">From the Department of Biochemistry.</wicri:noCountry>
</affiliation>
<affiliation>
<nlm:affiliation>the Cancer Research UK Cambridge Institute, and.</nlm:affiliation>
<wicri:noCountry code="subField">and</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Larkin, Timothy J" sort="Larkin, Timothy J" uniqKey="Larkin T" first="Timothy J" last="Larkin">Timothy J. Larkin</name>
<affiliation>
<nlm:affiliation>From the Department of Biochemistry.</nlm:affiliation>
<wicri:noCountry code="no comma">From the Department of Biochemistry.</wicri:noCountry>
</affiliation>
<affiliation>
<nlm:affiliation>the Cancer Research UK Cambridge Institute, and.</nlm:affiliation>
<wicri:noCountry code="subField">and</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Dzien, Piotr" sort="Dzien, Piotr" uniqKey="Dzien P" first="Piotr" last="Dzien">Piotr Dzien</name>
<affiliation>
<nlm:affiliation>From the Department of Biochemistry.</nlm:affiliation>
<wicri:noCountry code="no comma">From the Department of Biochemistry.</wicri:noCountry>
</affiliation>
<affiliation>
<nlm:affiliation>the Cancer Research UK Cambridge Institute, and.</nlm:affiliation>
<wicri:noCountry code="subField">and</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Marco Rius, Irene" sort="Marco Rius, Irene" uniqKey="Marco Rius I" first="Irene" last="Marco-Rius">Irene Marco-Rius</name>
<affiliation>
<nlm:affiliation>From the Department of Biochemistry.</nlm:affiliation>
<wicri:noCountry code="no comma">From the Department of Biochemistry.</wicri:noCountry>
</affiliation>
<affiliation>
<nlm:affiliation>the Cancer Research UK Cambridge Institute, and.</nlm:affiliation>
<wicri:noCountry code="subField">and</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Bohndiek, Sarah E" sort="Bohndiek, Sarah E" uniqKey="Bohndiek S" first="Sarah E" last="Bohndiek">Sarah E. Bohndiek</name>
<affiliation>
<nlm:affiliation>the Cancer Research UK Cambridge Institute, and.</nlm:affiliation>
<wicri:noCountry code="subField">and</wicri:noCountry>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>the Department of Physics, University of Cambridge, Cambridge CB2 0RE, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>the Department of Physics, University of Cambridge, Cambridge CB2 0RE</wicri:regionArea>
<orgName type="university">Université de Cambridge</orgName>
<placeName>
<settlement type="city">Cambridge</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Angleterre de l'Est</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Brindle, Kevin M" sort="Brindle, Kevin M" uniqKey="Brindle K" first="Kevin M" last="Brindle">Kevin M. Brindle</name>
<affiliation wicri:level="1">
<nlm:affiliation>From the Department of Biochemistry, kmb1001@cam.ac.uk.</nlm:affiliation>
<country wicri:rule="url">Royaume-Uni</country>
<wicri:regionArea>From the Department of Biochemistry</wicri:regionArea>
</affiliation>
<affiliation>
<nlm:affiliation>the Cancer Research UK Cambridge Institute, and.</nlm:affiliation>
<wicri:noCountry code="subField">and</wicri:noCountry>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:27994059</idno>
<idno type="pmid">27994059</idno>
<idno type="doi">10.1074/jbc.M116.761536</idno>
<idno type="pmc">PMC5290948</idno>
<idno type="wicri:Area/Main/Corpus">000381</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000381</idno>
<idno type="wicri:Area/Main/Curation">000381</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000381</idno>
<idno type="wicri:Area/Main/Exploration">000381</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Assessing Oxidative Stress in Tumors by Measuring the Rate of Hyperpolarized [1-13C]Dehydroascorbic Acid Reduction Using 13C Magnetic Resonance Spectroscopy.</title>
<author>
<name sortKey="Timm, Kerstin N" sort="Timm, Kerstin N" uniqKey="Timm K" first="Kerstin N" last="Timm">Kerstin N. Timm</name>
<affiliation>
<nlm:affiliation>From the Department of Biochemistry.</nlm:affiliation>
<wicri:noCountry code="no comma">From the Department of Biochemistry.</wicri:noCountry>
</affiliation>
<affiliation>
<nlm:affiliation>the Cancer Research UK Cambridge Institute, and.</nlm:affiliation>
<wicri:noCountry code="subField">and</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Hu, De En" sort="Hu, De En" uniqKey="Hu D" first="De-En" last="Hu">De-En Hu</name>
<affiliation>
<nlm:affiliation>From the Department of Biochemistry.</nlm:affiliation>
<wicri:noCountry code="no comma">From the Department of Biochemistry.</wicri:noCountry>
</affiliation>
<affiliation>
<nlm:affiliation>the Cancer Research UK Cambridge Institute, and.</nlm:affiliation>
<wicri:noCountry code="subField">and</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Williams, Michael" sort="Williams, Michael" uniqKey="Williams M" first="Michael" last="Williams">Michael Williams</name>
<affiliation>
<nlm:affiliation>the Cancer Research UK Cambridge Institute, and.</nlm:affiliation>
<wicri:noCountry code="subField">and</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Wright, Alan J" sort="Wright, Alan J" uniqKey="Wright A" first="Alan J" last="Wright">Alan J. Wright</name>
<affiliation>
<nlm:affiliation>the Cancer Research UK Cambridge Institute, and.</nlm:affiliation>
<wicri:noCountry code="subField">and</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Kettunen, Mikko I" sort="Kettunen, Mikko I" uniqKey="Kettunen M" first="Mikko I" last="Kettunen">Mikko I. Kettunen</name>
<affiliation>
<nlm:affiliation>From the Department of Biochemistry.</nlm:affiliation>
<wicri:noCountry code="no comma">From the Department of Biochemistry.</wicri:noCountry>
</affiliation>
<affiliation>
<nlm:affiliation>the Cancer Research UK Cambridge Institute, and.</nlm:affiliation>
<wicri:noCountry code="subField">and</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Kennedy, Brett W C" sort="Kennedy, Brett W C" uniqKey="Kennedy B" first="Brett W C" last="Kennedy">Brett W C. Kennedy</name>
<affiliation>
<nlm:affiliation>From the Department of Biochemistry.</nlm:affiliation>
<wicri:noCountry code="no comma">From the Department of Biochemistry.</wicri:noCountry>
</affiliation>
<affiliation>
<nlm:affiliation>the Cancer Research UK Cambridge Institute, and.</nlm:affiliation>
<wicri:noCountry code="subField">and</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Larkin, Timothy J" sort="Larkin, Timothy J" uniqKey="Larkin T" first="Timothy J" last="Larkin">Timothy J. Larkin</name>
<affiliation>
<nlm:affiliation>From the Department of Biochemistry.</nlm:affiliation>
<wicri:noCountry code="no comma">From the Department of Biochemistry.</wicri:noCountry>
</affiliation>
<affiliation>
<nlm:affiliation>the Cancer Research UK Cambridge Institute, and.</nlm:affiliation>
<wicri:noCountry code="subField">and</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Dzien, Piotr" sort="Dzien, Piotr" uniqKey="Dzien P" first="Piotr" last="Dzien">Piotr Dzien</name>
<affiliation>
<nlm:affiliation>From the Department of Biochemistry.</nlm:affiliation>
<wicri:noCountry code="no comma">From the Department of Biochemistry.</wicri:noCountry>
</affiliation>
<affiliation>
<nlm:affiliation>the Cancer Research UK Cambridge Institute, and.</nlm:affiliation>
<wicri:noCountry code="subField">and</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Marco Rius, Irene" sort="Marco Rius, Irene" uniqKey="Marco Rius I" first="Irene" last="Marco-Rius">Irene Marco-Rius</name>
<affiliation>
<nlm:affiliation>From the Department of Biochemistry.</nlm:affiliation>
<wicri:noCountry code="no comma">From the Department of Biochemistry.</wicri:noCountry>
</affiliation>
<affiliation>
<nlm:affiliation>the Cancer Research UK Cambridge Institute, and.</nlm:affiliation>
<wicri:noCountry code="subField">and</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Bohndiek, Sarah E" sort="Bohndiek, Sarah E" uniqKey="Bohndiek S" first="Sarah E" last="Bohndiek">Sarah E. Bohndiek</name>
<affiliation>
<nlm:affiliation>the Cancer Research UK Cambridge Institute, and.</nlm:affiliation>
<wicri:noCountry code="subField">and</wicri:noCountry>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>the Department of Physics, University of Cambridge, Cambridge CB2 0RE, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>the Department of Physics, University of Cambridge, Cambridge CB2 0RE</wicri:regionArea>
<orgName type="university">Université de Cambridge</orgName>
<placeName>
<settlement type="city">Cambridge</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Angleterre de l'Est</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Brindle, Kevin M" sort="Brindle, Kevin M" uniqKey="Brindle K" first="Kevin M" last="Brindle">Kevin M. Brindle</name>
<affiliation wicri:level="1">
<nlm:affiliation>From the Department of Biochemistry, kmb1001@cam.ac.uk.</nlm:affiliation>
<country wicri:rule="url">Royaume-Uni</country>
<wicri:regionArea>From the Department of Biochemistry</wicri:regionArea>
</affiliation>
<affiliation>
<nlm:affiliation>the Cancer Research UK Cambridge Institute, and.</nlm:affiliation>
<wicri:noCountry code="subField">and</wicri:noCountry>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="eISSN">1083-351X</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Carbon Isotopes (MeSH)</term>
<term>Cell Line, Tumor (MeSH)</term>
<term>Dehydroascorbic Acid (metabolism)</term>
<term>Humans (MeSH)</term>
<term>Isotope Labeling (MeSH)</term>
<term>Magnetic Resonance Spectroscopy (MeSH)</term>
<term>Mice (MeSH)</term>
<term>NADP (metabolism)</term>
<term>Neoplasms (metabolism)</term>
<term>Oxidative Stress (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acide déhydroascorbique (métabolisme)</term>
<term>Animaux (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Isotopes du carbone (MeSH)</term>
<term>Lignée cellulaire tumorale (MeSH)</term>
<term>Marquage isotopique (MeSH)</term>
<term>NADP (métabolisme)</term>
<term>Souris (MeSH)</term>
<term>Spectroscopie par résonance magnétique (MeSH)</term>
<term>Stress oxydatif (MeSH)</term>
<term>Tumeurs (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Dehydroascorbic Acid</term>
<term>NADP</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Carbon Isotopes</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Neoplasms</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acide déhydroascorbique</term>
<term>NADP</term>
<term>Tumeurs</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cell Line, Tumor</term>
<term>Humans</term>
<term>Isotope Labeling</term>
<term>Magnetic Resonance Spectroscopy</term>
<term>Mice</term>
<term>Oxidative Stress</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Humains</term>
<term>Isotopes du carbone</term>
<term>Lignée cellulaire tumorale</term>
<term>Marquage isotopique</term>
<term>Souris</term>
<term>Spectroscopie par résonance magnétique</term>
<term>Stress oxydatif</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Rapid cancer cell proliferation promotes the production of reducing equivalents, which counteract the effects of relatively high levels of reactive oxygen species. Reactive oxygen species levels increase in response to chemotherapy and cell death, whereas an increase in antioxidant capacity can confer resistance to chemotherapy and is associated with an aggressive tumor phenotype. The pentose phosphate pathway is a major site of NADPH production in the cell, which is used to maintain the main intracellular antioxidant, glutathione, in its reduced state. Previous studies have shown that the rate of hyperpolarized [1-
<sup>13</sup>
C]dehydroascorbic acid (DHA) reduction, which can be measured in vivo using non-invasive
<sup>13</sup>
C magnetic resonance spectroscopic imaging, is increased in tumors and that this is correlated with the levels of reduced glutathione. We show here that the rate of hyperpolarized [1-
<sup>13</sup>
C]DHA reduction is increased in tumors that have been oxidatively prestressed by depleting the glutathione pool by buthionine sulfoximine treatment. This increase was associated with a corresponding increase in pentose phosphate pathway flux, assessed using
<sup>13</sup>
C-labeled glucose, and an increase in glutaredoxin activity, which catalyzes the glutathione-dependent reduction of DHA. These results show that the rate of DHA reduction depends not only on the level of reduced glutathione, but also on the rate of NADPH production, contradicting the conclusions of some previous studies. Hyperpolarized [1-
<sup>13</sup>
C]DHA can be used, therefore, to assess the capacity of tumor cells to resist oxidative stress in vivo However, DHA administration resulted in transient respiratory arrest and cardiac depression, which may prevent translation to the clinic.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27994059</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>06</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1083-351X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>292</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2017</Year>
<Month>02</Month>
<Day>03</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>Assessing Oxidative Stress in Tumors by Measuring the Rate of Hyperpolarized [1-13C]Dehydroascorbic Acid Reduction Using 13C Magnetic Resonance Spectroscopy.</ArticleTitle>
<Pagination>
<MedlinePgn>1737-1748</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1074/jbc.M116.761536</ELocationID>
<Abstract>
<AbstractText>Rapid cancer cell proliferation promotes the production of reducing equivalents, which counteract the effects of relatively high levels of reactive oxygen species. Reactive oxygen species levels increase in response to chemotherapy and cell death, whereas an increase in antioxidant capacity can confer resistance to chemotherapy and is associated with an aggressive tumor phenotype. The pentose phosphate pathway is a major site of NADPH production in the cell, which is used to maintain the main intracellular antioxidant, glutathione, in its reduced state. Previous studies have shown that the rate of hyperpolarized [1-
<sup>13</sup>
C]dehydroascorbic acid (DHA) reduction, which can be measured in vivo using non-invasive
<sup>13</sup>
C magnetic resonance spectroscopic imaging, is increased in tumors and that this is correlated with the levels of reduced glutathione. We show here that the rate of hyperpolarized [1-
<sup>13</sup>
C]DHA reduction is increased in tumors that have been oxidatively prestressed by depleting the glutathione pool by buthionine sulfoximine treatment. This increase was associated with a corresponding increase in pentose phosphate pathway flux, assessed using
<sup>13</sup>
C-labeled glucose, and an increase in glutaredoxin activity, which catalyzes the glutathione-dependent reduction of DHA. These results show that the rate of DHA reduction depends not only on the level of reduced glutathione, but also on the rate of NADPH production, contradicting the conclusions of some previous studies. Hyperpolarized [1-
<sup>13</sup>
C]DHA can be used, therefore, to assess the capacity of tumor cells to resist oxidative stress in vivo However, DHA administration resulted in transient respiratory arrest and cardiac depression, which may prevent translation to the clinic.</AbstractText>
<CopyrightInformation>© 2017 by The American Society for Biochemistry and Molecular Biology, Inc.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Timm</LastName>
<ForeName>Kerstin N</ForeName>
<Initials>KN</Initials>
<AffiliationInfo>
<Affiliation>From the Department of Biochemistry.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>the Cancer Research UK Cambridge Institute, and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hu</LastName>
<ForeName>De-En</ForeName>
<Initials>DE</Initials>
<AffiliationInfo>
<Affiliation>From the Department of Biochemistry.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>the Cancer Research UK Cambridge Institute, and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Williams</LastName>
<ForeName>Michael</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>the Cancer Research UK Cambridge Institute, and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wright</LastName>
<ForeName>Alan J</ForeName>
<Initials>AJ</Initials>
<AffiliationInfo>
<Affiliation>the Cancer Research UK Cambridge Institute, and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kettunen</LastName>
<ForeName>Mikko I</ForeName>
<Initials>MI</Initials>
<AffiliationInfo>
<Affiliation>From the Department of Biochemistry.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>the Cancer Research UK Cambridge Institute, and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kennedy</LastName>
<ForeName>Brett W C</ForeName>
<Initials>BW</Initials>
<AffiliationInfo>
<Affiliation>From the Department of Biochemistry.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>the Cancer Research UK Cambridge Institute, and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Larkin</LastName>
<ForeName>Timothy J</ForeName>
<Initials>TJ</Initials>
<AffiliationInfo>
<Affiliation>From the Department of Biochemistry.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>the Cancer Research UK Cambridge Institute, and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dzien</LastName>
<ForeName>Piotr</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>From the Department of Biochemistry.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>the Cancer Research UK Cambridge Institute, and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Marco-Rius</LastName>
<ForeName>Irene</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>From the Department of Biochemistry.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>the Cancer Research UK Cambridge Institute, and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bohndiek</LastName>
<ForeName>Sarah E</ForeName>
<Initials>SE</Initials>
<AffiliationInfo>
<Affiliation>the Cancer Research UK Cambridge Institute, and.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>the Department of Physics, University of Cambridge, Cambridge CB2 0RE, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Brindle</LastName>
<ForeName>Kevin M</ForeName>
<Initials>KM</Initials>
<AffiliationInfo>
<Affiliation>From the Department of Biochemistry, kmb1001@cam.ac.uk.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>the Cancer Research UK Cambridge Institute, and.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>12</Month>
<Day>19</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002247">Carbon Isotopes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>53-59-8</RegistryNumber>
<NameOfSubstance UI="D009249">NADP</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>Y2Z3ZTP9UM</RegistryNumber>
<NameOfSubstance UI="D003683">Dehydroascorbic Acid</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002247" MajorTopicYN="N">Carbon Isotopes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045744" MajorTopicYN="N">Cell Line, Tumor</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003683" MajorTopicYN="N">Dehydroascorbic Acid</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007553" MajorTopicYN="N">Isotope Labeling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009682" MajorTopicYN="N">Magnetic Resonance Spectroscopy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009249" MajorTopicYN="N">NADP</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009369" MajorTopicYN="N">Neoplasms</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="Y">Oxidative Stress</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">13C</Keyword>
<Keyword MajorTopicYN="Y">dehydroascorbic acid</Keyword>
<Keyword MajorTopicYN="Y">glutathione</Keyword>
<Keyword MajorTopicYN="Y">glutathione peroxidase</Keyword>
<Keyword MajorTopicYN="Y">hyperpolarization</Keyword>
<Keyword MajorTopicYN="Y">in vivo imaging</Keyword>
<Keyword MajorTopicYN="Y">oxidative stress</Keyword>
<Keyword MajorTopicYN="Y">pentose phosphate pathway (PPP)</Keyword>
<Keyword MajorTopicYN="Y">tumor metabolism</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>10</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2016</Year>
<Month>12</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>12</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>6</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>12</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27994059</ArticleId>
<ArticleId IdType="pii">M116.761536</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.M116.761536</ArticleId>
<ArticleId IdType="pmc">PMC5290948</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2010 Jul 30;285(31):23557-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20498365</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Res Commun. 1993;18(6):369-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8397148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2011 Aug 3;133(30):11795-801</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21692446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biosyst. 2011 Oct;7(10):2834-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21720636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol. 1951 Oct;167(1):119-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14885478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1979 Aug 25;254(16):7558-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">38242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biochem. 2008 May 15;104(2):657-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18172854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1982 Nov 25;257(22):13704-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6128339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 1999 Sep 15;59(18):4555-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10493506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2007 Nov;13(11):1382-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17965722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Q J Nucl Med Mol Imaging. 2014 Dec;58(4):387-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25366710</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>NMR Biomed. 2013 Dec;26(12):1831-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24115045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ChemMedChem. 2014 Jun;9(6):1116-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24825674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2016 Jun;95:27-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26923386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Nutr Biochem. 2013 Feb;24(2):467-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22633911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Cancer. 2011 Feb;11(2):85-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21258394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2008 Nov;1780(11):1304-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18621099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res. 2001 Mar 23;895(1-2):66-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11259761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rapid Commun Mass Spectrom. 2008;22(4):432-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18215009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Diabetes. 2015 Feb;64(2):344-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25187363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Radiat Oncol Biol Phys. 1992;22(4):769-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1544851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Oct 12;276(41):37747-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11489902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Magn Reson Med. 2012 Jun;67(6):1827-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22113626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Dec 2;334(6060):1278-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22052977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Br J Cancer. 2010 Oct 26;103(9):1400-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20924379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Transl Med. 2013 Aug 14;5(198):198ra108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23946197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Magn Reson Med. 2015 Dec;74(6):1543-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25522215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2009 Jul;27(7):604-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19587661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Nov 15;108(46):18606-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22042839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2002 Jan 1;62(1):307-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11782393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurochem. 2014 May;129(4):663-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24460956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 1996;20(4):543-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8904295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Radiat Oncol J. 2014 Sep;32(3):103-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25324981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 1997;22(4):657-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9013128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Integr Cancer Ther. 2014 Jul;13(4):280-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24867961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Histochem J. 1983 Oct;15(10):977-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6315642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pharm Pharmacol. 2008 Aug;60(8):1049-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18644197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncol Lett. 2012 Dec;4(6):1247-1253</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23205122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2014 Jan;20(1):93-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24317119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Jul 15;286(28):24572-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21596745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>NMR Biomed. 2012 Oct;25(10 ):1177-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22383401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biochem. 2002 May-Jun;234-235(1-2):393-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12162459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19345-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18032601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2000 Feb 1;345 Pt 3:665-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10642526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2010 Oct;38(5):1220-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20863288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bioenerg Biomembr. 2012 Dec;44(6):645-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22895837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Magn Reson. 2010 Feb;202(2):259-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20005139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Chem. 2009 Mar;390(3):191-214</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19166318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Med Biol. 2011 Mar 7;56(5):N85-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21285486</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 1986 Jun;46(6):2845-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2421885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Nucl Med. 2013 Jun;54(6):922-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23575993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2007 Jan;274(1):1-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17222174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Rev Camb Philos Soc. 2015 Aug;90(3):927-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25243985</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Syst Biol. 2014 Apr 25;10:725</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24771084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2011 Feb 2;30(3):546-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21157431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Sep 2;100(18):10158-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12930897</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Royaume-Uni</li>
</country>
<region>
<li>Angleterre</li>
<li>Angleterre de l'Est</li>
</region>
<settlement>
<li>Cambridge</li>
</settlement>
<orgName>
<li>Université de Cambridge</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Dzien, Piotr" sort="Dzien, Piotr" uniqKey="Dzien P" first="Piotr" last="Dzien">Piotr Dzien</name>
<name sortKey="Hu, De En" sort="Hu, De En" uniqKey="Hu D" first="De-En" last="Hu">De-En Hu</name>
<name sortKey="Kennedy, Brett W C" sort="Kennedy, Brett W C" uniqKey="Kennedy B" first="Brett W C" last="Kennedy">Brett W C. Kennedy</name>
<name sortKey="Kettunen, Mikko I" sort="Kettunen, Mikko I" uniqKey="Kettunen M" first="Mikko I" last="Kettunen">Mikko I. Kettunen</name>
<name sortKey="Larkin, Timothy J" sort="Larkin, Timothy J" uniqKey="Larkin T" first="Timothy J" last="Larkin">Timothy J. Larkin</name>
<name sortKey="Marco Rius, Irene" sort="Marco Rius, Irene" uniqKey="Marco Rius I" first="Irene" last="Marco-Rius">Irene Marco-Rius</name>
<name sortKey="Timm, Kerstin N" sort="Timm, Kerstin N" uniqKey="Timm K" first="Kerstin N" last="Timm">Kerstin N. Timm</name>
<name sortKey="Williams, Michael" sort="Williams, Michael" uniqKey="Williams M" first="Michael" last="Williams">Michael Williams</name>
<name sortKey="Wright, Alan J" sort="Wright, Alan J" uniqKey="Wright A" first="Alan J" last="Wright">Alan J. Wright</name>
</noCountry>
<country name="Royaume-Uni">
<region name="Angleterre">
<name sortKey="Bohndiek, Sarah E" sort="Bohndiek, Sarah E" uniqKey="Bohndiek S" first="Sarah E" last="Bohndiek">Sarah E. Bohndiek</name>
</region>
<name sortKey="Brindle, Kevin M" sort="Brindle, Kevin M" uniqKey="Brindle K" first="Kevin M" last="Brindle">Kevin M. Brindle</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000389 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000389 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:27994059
   |texte=   Assessing Oxidative Stress in Tumors by Measuring the Rate of Hyperpolarized [1-13C]Dehydroascorbic Acid Reduction Using 13C Magnetic Resonance Spectroscopy.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:27994059" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020